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Heat transport coefficients are calculated for various random walks with inter- 
nal states (the Markov partition of the Sinai billiard connects these walks with 
the Lorentz gas among a periodic configuration of scatterers). Models with 
reflecting or absorbing barriers and also those without or with local thermal 
equilibrium are investigated. The method is unified and is based on the Ketdysh 
expansion of the resolvent of a matrix polynomial. 
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1. I N T R O D U C T I O N  

The problem of heat conduct ion  has inspired many  fundamental  ideas in 
mathematical  physics. The deterministic heat equat ion was studied by 
Fourier  as early as 1807 and his investigations were summed up in his 
famous book/3)  Since heat conduct ion  is only one example of t ransport  
processes (e.g., neut ron transport ,  electron scattering by impurities in a 
solid, etc.), it is impossible to survey even the most  impor tant  develop- 
ments of the theory. Nonetheless, "such well established experimental facts 
as Fourier 's  law of heat conduct ion  or Fick's law of  diffusion can neither be 
derived rigorously for general systems nor  shown to hold for realistic 
microscopic models. ''/l~ The explanat ion of this statement is that  the 
theory of large systems of interacting particles, e.g., of those of hard balls 
interacting via elastic collisions, is moving forward only slowly. As a con- 
sequence, interest has turned to simplified, but  far from simple, models, 
such as the Lorentz  gas or the harmonic  crystal. 
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An intuitive description of the problem is the following: Consider a 
Lorentz gas in Nv with a 7/V-periodic configuration of scatterers (for sim- 
plicity, we suppose they are spheres). We restrict the model to the strip 
between two barriers put at x~ = 0 and Xl = L (L is a large integer) and 
serving as heat reservoirs kept at constant temperatures T1 and T2 (> T~). 
A gas of noninteracting point particles is given in the strip. The motion of a 
single particle is uniform, with elastic collisions at the scatterers and with 
stochastic boundary conditions at the barriers: if a particle hits the wall 
Xl = 0  (xl = L), it gets a new velocity independent of its incoming phase, 
with density equal to const x exp[--(1/kB T~)(v, v)] for vl > 0 and to 0 for 
vl~<0 {to constxexp[-(1/kBT2)(v,v)] for v l < 0  and to 0 for vl>~0, 
respectively}. In fact, the main requirements on the distributions of the 
outgoing velocities are that they are smooth and their second moments are 
proportional to the temperatures of the walls. 

Now, from Goldstein et aL, (4) the existence of a steady state measure 
follows at any given density D of the gas particles and it also makes sense 
to define Etr(Tl, T2, D, L) as the amount of energy transferred by the 
system between the two reservoirs per unit time and surface volume. Then 
the conductivity of the medium is defined as the thermodynamic limit 

~c(T~, T2, D ) =  lira LEtr(Ta, T2, D, L) 
L ~ o o  

1.1) 

and finally its heat conductivity coefficient at temperature T is 

s:(T, D ) =  lim (AT) ~ K(T,, T2, D) 
A t ~ O  

(1.2) 

where TI = T-�89 and T2= T+�89 provided that the limits (1.1) and 
(1.2) exist. 

The aim of the present paper is to show the existence of ~c(T, D) and 
calculate its value for a caricature model of the Lorentz gas, namely for 
random walks with internal states (RWwIS). Now, (i)because of the 
periodicity of the scatterers, the dynamics of the Lorentz particle can be 
reduced to a Sinai billiard, (1) and (ii)the Markov partition of the Sinai 
billiard enables us to approximate it by a sequence of RWwIS's, (s) so the 
RWwIS's are legitimate models of the Lorentz dynamics and the strategy is 
justified that by handling the difficulties of the limit transition in their spec- 
tra, one also can obtain the corresponding results for the Lorentz gas. (We 
remark that, in the approximation, the internal states of the random walk 
correspond to elements of the Markov partition.) 

The starting point of our investigation is the fundamental work of 
Lebowitz and Spohn, (~) where Fourier's law of heat conduction was 
derived in a different setup by also using an approximation via the linear 
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Boltzmann equation. The main differences are that their paper (i) considers 
stochastic scatterer configurations rather than deterministic ones, (ii) takes 
the Boltzmann Grad limit with the mean free path tending to a positive 
constant, and (iii)only shows the existence of the heat conductivity coef- 
ficient defined by limits taken in reversed order: 

KLs(T~ D ) =  lim L lim (AT) ~ Err(T1, T2, D, L) (1.3) 
L~oo At~O 

The calculation of the transport coefficients uses the tools of our 
technical papers (7'9) based on the Keldysh expansion of the resolvent of a 
matrix polynomial. In Section 2 we introduce our model: a continuous-time 
two-color RWwIS (with the colors representing the energy of the particle). 
The computation of ~c then reduces to the asymptotic evaluation of the 
time-invariant distribution of this random walk (we remark that in Ref. 2 
classical random walks were used to model heat conduction). Our main 
result says that 

( T 2 -  T1)(T, T2) 1/2 0-2 Utr= D~ N~ll _[_ ~ -Jr O(C 1) 

where D is the density, 2 is the proportionality constant in the jumping 
rates, and a 2 is the variance of the RWwIS. 

The generality of our method allows us to describe transport in 
various models. Thus, in Section 3, we treat heat transport in the sense of a 
simplified model suggested by Lebowitz and Spohn. II2/ Here, both walls 
are absorbing and input only appears at one of them with a prescribed dis- 
tribution among the internal states. Then the calculation of the transport 
coefficients is obtained from the asymptotic form of the solution of the 
Dirichlet problem. 

Since the dynamics assumed in Section 2 does not involve local ther- 
mal equilibrium, one can only use a naive notion of temperature ( =  energy 
density per particle) to find its profile, which turns out to be linear frac- 
tional rather than linear. Therefore, in Section 4, we modify the model. We 
suppose that every lattice site has a local, a priori  temperature derived from 
principles of zero particle flux and constant energy flux and from the given 
boundary temperatures T1 and T2. The local jumping rates of the RWwIS 
are determined by these local temperatures. In this less microscopic but 
more physical model the energy flux becomes 

<r = �88 rl)i,f , + + OIL l) 

and the temperature profile will be asymptotically linear. (We remark that 
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heat transport in a slightly analogous modification of a disordered har- 
monic chain has been studied by Rich and VisscherJ TM 

Section 5 contains conclusions and remarks. 

. A T W O - C O L O R  R A N D O M  W A L K  W I T H  I N T E R N A L  S T A T E S  
( T C R W w l S ) :  H E A T  C O N D U C T I O N  W I T H O U T  LOCAL 
T H E R M A L  E Q U I L I B R I U M  

In our previous papers (7'8) we worked out the theory of discrete-time 
parameter random walks with internal states. For our purposes we need to 
extend the results of Ref. 7 to a slightly more complicated model with con- 
tinuous-time parameter: to derive results directly applicable to the theory 
of heat conduction, we have to determine the stationary probabilities for a 
TCRWwIS to be defined below. The mathematical machinery of the com- 
pu ta t ions - the  spectral theory of matrix polynomials--is the same as in the 
aforementioned papers. 

In order to explain the minor modifications needed for the TCRWwIS, 
we shall demonstrate the methods on the simplest nontrivial case. For 
treating the general case it is enough to repeat the corresponding proofs of 
Ref. 7. Let us turn to the definition of the TCRWwIS. 

D e f i n i t i o n  2 .1 .  
parameter Markov 
(b: blue, r: red) as 
probability vectors 

Let ~ = { 1,..., d} be a finite set. A continuous-time 
process defined on the state space Z | 1 7 4  

follows is called a TCRWwIS. Let us introduce the 

b(t, x) := (bl(t, x) ..... b~(t, x)) 

r(t, x) := (r,(t, x) ..... r.(t,  x))  

which give the probabilities 

P(~, = (x, k, b)) = bk(t, x)  

P({, = (x, k, r)) = rk(t , x)  

respectively; x ~ 7/, k e o ~. We first give the forward Kolmogorov equations 
for b(t, x)  and r(t, x): 

~?b( t, x) 
~?t - 2 b E - b ( t ' x ) + A * b ( t ' x + l ) + A * b ( t ' x - 1 ) ]  

ar(t, x) 
(2.1) 

c ~  - 2 r [ - - r ( t ,  x ) + A * _ r ( t ,  x +  1 ) + A *  r ( t , x - -  1)] 
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Here A + and A are nonnegative dx  d matrices such that A + + A = Q is 
a stochastic matrix and 2h < 2, are two positive constants, namely the jum- 
ping rates for ~t = (', ', b) and ~t = ( ' , ' ,  r), respectively. The transitions of 
~, from a state of the type ( . , . ,  b) to a state of the type ( . , . ,  r) and vice 
versa take place through the exchange rules at the boundaries x = 0  and 
x=L after restricting the phase space Z|174 to {0, 1,.. . ,L}| 

An intuitive description of this process is the following: the walking 
particle has an internal state and a color. When hitting the wall at 0 (at L) 
the color becomes blue (red). The jumping rate only depends on the color, 
namely it is 2 b or 2~. The particle only jumps to nearest neighbor lattice 
sites and the probability for the transition of internal states is given by the 
matrix A_ or A+ if the jump is - 1  or + 1, respectively. If in 0 or 1 the 
above rule resulted in a jump to the left, then the new site of the particle 
will be 0 (the blue boundary), its color becomes (or remains) blue, and by 
definition the particle changes its internal states after the jump again, 
according to the stochastic matrix S~. This matrix S~ expresses the effect of 
the wall (or heat reservoir) on the internal states. Analogous statements 
hold for the other wall (the site L) with another stochastic matrix $2. In 
order to avoid cumbersome formulas, we assume that each row of the 
matrix S~ ($2) is equal to the vector ~z I (~r2). 

N o w  

Ref. 7. 
Set A + :=(ai  + ) a n d A  :=(a(7). 

(i) Q = A + + A _ is an ergodic, aperiodic stochastic matrix, so there 
exists a unique stationary probability vector #=(#~  ..... #d)* 
such that 

(ii) #ia(~ = #jaj7 (reversibility) 

(iii) For every j, k e g and m e 2 there exists a natural number n and 
a sequence {6~,...,6n} of plus and minus signs such that 
(I1'~_ ~ A~) j . ,>0  and the number of plus signs in {c~ ..... cSn} is 
equal to (m + n)/2. 

:= (1,..., 1)* 
d times 

Conditions (i) (iii) imply the centralization condition 

( ( A + - A ) ~ ,  # ) = 0  (2.2) 

and the nondegeneracy condition: for every representive e of 

we briefly repeat the conditions imposed on A+ and A in 

Set 
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( I - Q ) - I ( A + - A ) 4  [which exists by virtue of (2.2)] 1 + 
2((A + - A _ )e, #) := ~2 > 0 (for proofs see Ref. 7). 

Throughout this paper, we assume for simplicity that A+ (and con- 
sequently A ) is invertible. The equations for the stationary probability 
vectors b(x) and r(x) derived from the forward Kolmogorov equations are 

b(x)=A* b ( x -  1) + A*_b(x + 1) 
( 0 < x < L )  (2.3) 

r(x) =A* r ( x -  1)+A* r(x + 1) 

2bb(O) = S 'A*  [2bb(0) + 2bb(1) + )~rr(1)] 

)orr(L) * , =SzA+[2rr(L)+2rr(L- 1) + ,~b(L-  1)] 
r(0) = 0 (2.4) 

b(L)=O 

The boundary conditions (2.4) describe the exchange rules ( ' , ' ,  b),__ 
(-,. ,  r). We are looking for b(x) and r(x) in the form of linear combinations 
of d-dimensional, vector-valued functions 

Here )Co is the eigenvector of the matrix polynomial S(p):=A*_p z -  
Ip +A* (I is the dx  d identity matrix) corresponding to the eigenvalue p 
[det S(p) = 0], while f l  ..... f ,  are the cyclic vectors, if they exist. They are 
defined by the chain of equations 

S(p) fo = 0 

1 OS(p)f ~ 
S(P) f~ + l! ap = 0  

1 0~s(p) 
S ( p ) f s + + s !  ~ f ~  

All the properties of the matrix polynomial S(p) needed for the solution of 
Eqs. (2.3) and (2.4) are formulated and proved in our previous papers. 
First we recall two of them, which essentially determine the structure of the 
solution: 

S t a t o m o n t  2.1. 1 is the only eigenvalue of S(p) on the unit circle. 
The corresponding eigenvector is /~. There exists exactly one cyclic vector 
f~ = ( Q * - I )  I(A* - A * ) #  belonging to it. 

S t a t o m o n t  2.2. The equation det S(p)= 0 has exactly d - 1  roots 
inside the unit circle. If p is a root, then t~ and p - i  are also roots with the 
same multiplicity and the same structure of cyclic vectors. 
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For  the sake of brevity,  we assume that  there are no cyclic vectors. Let 
fp denote  the eigenvector  corresponding to the root  p. In order  to get sym- 
metry  of the formulas  near  the boundar ies  x = 0 and x = L, we seek the 
s ta t ionary  probabil i t ies  in the following form: 

;@(x)=~0o~+~0~E(L-x)~-f~]+ E q,~pTp+ E ~o~P ~ % 
[ p [ < l  ] p [ > l  (2.5) 

Z,r(x)=ep~)#+~o~(x#+f~)+ ~ qo;pXfp+ ~ ~o;p ~ Lfp 
Ipl < I Ipl > 1 

r where the unknown  coefficients ~Oo b, q)l b ..... q~,..., (p; ..... ~op .... are to be deter- 
mined f rom the bounda ry  condit ions (2.4) and f rom the normal iz ing con- 
dition 

L 

(b(x) + r(x), { ) = 1 (2.6) 
x - 0 

Note. The Keldysh me thod  on the resolvent of  matr ix  polynomials  
implies the independence of the vector  system {/~;fp: [p] < 1} and of the 
system {/~; fp: ]p] > 1 } (cf. Propos i t ion  4.4 in Ref. 9). This implies that  each 
solution of (2.3) can be writ ten in the form of (2.5) with uniquely deter- 
mined coefficients (po b, q01 b ..... For  our  further compu ta t i on  it will be con- 
venient to write Eqs. (2.4) in the following order:  third, first, fourth, and 
second: 

S*A * {(2L - 1 )# - 2fl ] - L/~ + f~ 
(DO b 1 ~ _[_ (pbl 1 - -  

, ~z: / S ~ A * ( # - 2 f l  ) 

(L,  ~ ) ~, - o(~L) 

[pl < I Ipl > 1 fp 
\ o(~ L) / (f~,~)~r2 

+~o6 

+ 

' + q o ~  S ~ A _ ( # + 2 f l )  
0 

~ %  - # S ' A *  E ( 2 L  - 1 )U + 2 f ,  ] - L 

( t Ipl < 1 Ipl > 1 " 
\ O(~c L) / , (f, 4) ~ 2 - f p /  

= 0  (2.7) 
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This is a homogeneous system of 4d linear equations for the 4d variables 
(p0 b, (pl b ..... It turns out that the rank of the matrix of this system is equal to 
4 d - l  and the condition (2.6) will guarantee the uniqueness of the 
solution, as in Ref. 7. We note that ~c is a fixed constant, such that 
maxjol < 1 { IP] } < /s < 1. So the O0c L) terms are exponentially small in the 
system of equations (2.7) and they can be omitted, giving an exponentially 
small error in the variables ~Oo b and consequently in the probabilities r (x )  
and b(x) .  To obtain (2.7) we used the identities 

* * - 2 S * A * # = r c  2 S 1 A  _ t t -  ~zj , 

S ~ A *  fp = (A* fo, "~ ) 7[1 = ( g '  '~ ) 7~I/(p + 1) 

S ~ A *  fp  = (A*+ fo ,  ~ ) ~2 = P( fp ,  ~ )~z2/(P + 1) 

which follow easily from the properties of S 1 and S 2 and from Q~] = l, 
S ( p ) f p  = 0. (~I Subtracting the sum of the first d equations from the sum of 
the second d equations and neglecting the exponential terms, one gets 

[ - � 8 9  ~ ) + ( f ~ , ~ ) ] ( O l b + [ � 8 9  

The number �89 + 2(fl ,  A ~ ) -  (J~, ~ ) is equal to 02/2 r 0, as we can easily 
see from the definitions. Thus, b_  r (01--(P~ =0" [We note that the equality 
q)~ = ~o~ is exact, because the neglected O(tc L) vectors are orthogonal to ~.] 

Now we suppose the following natural conditions: 

=lq~span { fp} ,  ~2q~span {fp} (2.8) 
[P[ < 1 [Pl > l 

[for example, in the case n~ =/x = re2, the conditions (2.8) are satisfied in 
virtue of Proposition 4.4 in Ref. 9]. Now (2.8) and the above-mentioned 
independence of eigenvectors imply that the vectors 

0 

and the vectors 

0 L 

form two bases in the orthogonal complement of the vector 

(2.10) 
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Putting the terms with q)~ = (p~ = ~ of (2.7) on the right hand side, then 
expressing the upper (2d) size columns in terms of the base (2.9) and the 
lower ones in terms of the base (2.10), and finally eliminating some coef- 
ficients of ~Oo b and (p;, we get the following solutions of (2.7): 

q,~ = [70 + O(KL)]~ ' 

G =  Do+O(KL)]0 (1ol>l)  

~o; = [~0 + o ( ~ ) ] 0  

% = [ ~ +  o(~c~)]~ ' (Ipl < 1) 

q)rp=[dpL+ao+O(KL)]t) ([pl >1) 

(2.11) 

where the constants %, 2o, %, 7p, etc., can be expressed with the help of 
the vectors #, f~, fp, 7z~, =2. The actual expressions of these constants are 
completely unnecessary; the only important fact will be the order of the 

r numbers ~0o b, ~0~, q);, ~op compared with 0, as we shall see soon. 
Let us use the normalizing condition (2.6), giving physical meaning to 

the model investigated in this section. 
Because of the infinity and the periodicity of the medium in v - 1  

dimensions, our model is essentially one-dimensional. The process 
represents a particle moving between two boundaries x - - 0  and x = L ,  
which we assume to be heat reservoirs of temperatures T 1 and T2, respec- 
tively (say T 1 < T2). A particle in a state of the type ( . , . ,  b) or ( . , . ,  r) 
transports an amount of energy proportional to T~ or T2, respectively. Due 
to the physical meaning of the temperature (it is proportional to the mean 
square of the velocities of the particles), it is reasonable to assume that 
2b ~ ~ and 2 r ~ ~ 2 .  Further, since, in general, one gets a central limit 
theorem if the space variable is normed by L and the time variable (2 -1) is 
normed by L 2, the computations lead to correct results upon setting 

(2.12) 

(2 is a fixed proportionality constant). Now it is easy to derive from (2.6) 
with help of (2.5), (2.11), and (2.12) the expression for ~9: 

22(T1 T2) 1/2 
(2.13) 

To determine the energy flux Etr it is enough to compute the energy 
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exchange in the middle, say between the places x and x + 1, where x =  
[L /2 ] ,  so 

Err = D [  T2((A* i~rl'(X + 1), ~ ) - -  (A* ,~orr(X), ~ )) 

+ T~((A*2bb(x+ 1), ~ ) - ( A * Z b b ( x ) ,  ~))]  

(D is the density of the matter) .  Using (2.5), the approx ima t ion  (2.11), the 
equality 0-2 = 1 + 2 ( f l ,  (A - A +)4 ), and expression (2.13), we get 

0 -2 
Et~ = D( T2 - T1 ) -~- O = D2 

(Z  2 -  T1)(T 1 T2) 1/2 
o . 2 + O ( L  I) (2.14) 

The tempera ture  profile corresponding to our  model  can be deter- 
mined without  any further assumpt ion:  

density of energy at x 
TL(x) -- density of particle at x 

Using (2.5), (2.11), and (2.12), we have 

T,(I], b(x)) + T2('~, r(x)) 
TL(x) = 

rV2(L- x) + r /2x 
(4, b(x)) + (4, r(x)) T 11/2(L - x)  + T 2 1/2X 

T~/2(x/L) + TI/2(1 - x/L) 

T 2 1~2(x/L) + T 11/2(1 - -  x /L )  
-~-O(L 1) 

+O(L  1) 

if 

0 < 7 1  <~x/L <~61 < 1 

3. T R A N S P O R T  W I T H  P R E S C R I B E D  I N C O M I N G  D E N S I T I E S  
AT  T H E  B O U N D A R Y  

A simplified way to define a t ranspor t  coefficient has been proposed  in 
Ref. 12. We shall approx imate  the Lorentz  process with the RWwlS  as in 
Section 2. Now we do not deal with cold and warm particles, i.e., there is 
only one type of particle. For  simplicity, we shall work  with discrete-time 
parameters .  Suppose that  independent  particles are walking randomly  
between the absorbing  walls x = 0 and x = L. This RWwIS  is directed by 
the matrices A and A + .  Moreover ,  in each m o m e n t  of t ime some new 
particles appear  at the site x = L and in the internal state j ( j  = 1, 2 ..... d). 
The number  of these new particles is a r a n d o m  variable ~j with non-  
negative integer values and with finite expectat ion ~zj. By definition, these 
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new particles can only be absorbed at the absorbing wall x = L at their 
next return. We can define the vectors u(x) (x = O, 1,..., L), where the j th  
component of u(x) is the time-invariant expected value of the number of 
particles in the state (x, j). It is easy to see that these expected values are 
finite and, for the vectors u(x), the following equations and boundary con- 
ditions hold: 

u ( x ) = A * u ( x - 1 ) + A * _ u ( x + l )  ( 0 < x < L )  (3.1) 

u(0) = 0; u(L) = 7z = (~l ,--., 7zj)* (3.2) 

Denote by jL(D) the rate per unit time of particles being absorbed at the 
wall x = 0. [Hence D is the density of the incoming particles, i.e., D = 
(~, ~) = ~2/~/.] Then 

/?(D) = lim LjL(D) 
~ oo (u(xL + 1 ) -  u(xL), ~) 

L ?eL ~ o c  

is a temperature-independent version of a transport coefficient. (In this 
model the denominator can be regarded as the density gradient.) By 
definition, jc=(~,  A'u (1 ) ) .  According to Ref. 7, the general solution of 
(3.1) is 

u(x)=q)oll+q)l(xll+f')+ 2 (PpPZ, + 2 Pt, P x % (3.33 
IPl < 1 Ipl > 1 

The boundary conditions give the equations 

(po,tt -r- q01 f l  + 
Ipl < 1 

q30# -{- (P I ( L ] / +  f l )  + 2 
It)l > 1 

Because of the conservation of the flux 

~ , , J ;  = o ( ~  L) 

~, ,f , ,  = 7r + O(K ~ ) 

j L = ( ~ , A * u ( 1 ) ) = ( ~ , A * u ( x ) - A * u ( x - 1 ) )  ( 0 < x < L )  

If x ~ L/2, then, in (3.3), the main term in the asymptotics is the linear one 
and, following Ref. 9 (or Section 2 of this paper), 

LjL a2 det(~; f~, : [pI < I ) 
lira (3.4) 

c a  o~, 2 det(/l; fp: IP] < 1) 

Similarly 

lim (u(xL+ 1 ) -  u(xL), ~) det(Tz;fp: Ipl < 13 
L~oo det(/l; f~: [Pl < 1) 
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The following phenomenon is surprising: In general, 

lira lim (u(xL), ~) ~ D 

and the equality holds if and only if one has the martingale situation of 
Remark 5.6 in Ref. 7. 

4. H E A T  C O N D U C T I O N  W I T H  LOCAL T H E R M A L  E Q U I L I B R I U M  

Now we assume that the grid points l, 2,..., L - 1  take part in the 
energy transport. Let ~, be a continuous-time parameter RWwIS on the 
phase space E | g, which represents a particle transporting the energy. The 
transition matrices A + and A are the same as in Section 2, but the jump- 
ing rate is a (deterministic) function )~(x) of x e  {0, 1 ..... L}. It is natural to 
assume that )v(x)= 2L[TL(x)] ~/2, where TL(x ) is the unknown steady-state 
temperature profile. Our aim is to derive the shape of Te(x)  from the fact 
that in steady state the energy flux does not depend on x. The subscript L 
means that the phase space of {, is [0, L]  |  We shall determine the limit 
temperature profile when L--+ oo and finally, as in the preceding section, 
setting 2 L --)~L 2, compute the limit energy flux. 

Let us recall the forward Kolmogorov equation for the stationary 
probability vector p(x) of {,: For x e  I-l, L -  1] 

)~(x) p ( x ) =  A*  2 ( x - 1 )  p ( x - 1 )  + A* ;t(x + l ) p(x  + l ) (4.1) 

and for x = 0 ,  x = L  

)~(0) p(0) = A* )40) p(0) + A* 2(1 ) p(1 ) 

2(L) p(L)  = A * ).(L) p(L)  + A * 2(L - 1 ) p(L  - 1 ) 
(4.2) 

The energy flux between x -  1 and x is equal to 

E,.=D2L2(~,  - T 3 / 2 ( x - 1 ) A *  p ( x - 1 ) +  T3/2(x)A * p(x))  (4.3) 

The absence of particle flux is the consequence of the stationarity: 

('0, l,TL(X-- 1)] 1/2 A*+ p ( x -  1)-- l,TL(x)] 1/2 A* p(x)) = 0 (4.4) 

One gets from (4.3) and (4.4) that 

E t r = D 2 L 2 [ - T L ( X  - 1)+ TL(X)](A "~, I'TL(X)]I/Zp(x)) (4.5) 
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The main theorem of Ref. 7 gives exact asymptotics for p(x)[T(x)]  ~/2 when 
L --+ oo: 

p ( x ) [ T ( x ) ]  1/2 = C_._.__~L [# "4- Wl(X ) ~- v , ( L  --  X)] + O(K L) 
L+ao  

where 0 < t,- < 1, wl(x) = O(tc~), and vl(x) = O(KX). So 

[TL(x)]~/2p(x)= C__.___C_L #+O(L-I(~c.~+tcL x)) (4.6) 
L + a o  

The substitution of (4.6) into (4.5) gives 

2Etr(L + ao) 
TL(X) -- TL(x -- 1 ) = D)oL2CL( 1 + O(tc" + tc L ")) (4.7) 

Summing (4.7) over x e  [1, L],  we get 

2Etr[1 + O(1/L)] Lv~ 1 
T~ TI 2. - D).CL L[1 + O0cY + KL-")]  v=l 

= D2C~ + 0 (4.8) 

[observe that 52~=1 { L [ I + O ( t c " + K  c " ) ] } I = I + O ( 1 / L ) ]  and Cc and 
CL l are bounded functions of L; this last statement is a consequence of the 
boundedness of Tr(x ) and of the fact that p(x) is a probability distribution 
on [ O , L ] |  So 

D2C~ - ~ + 0 (4.9) 

Then (4.7) and (4.9) yield 

TL(k)-- T L ( k - 1 ) = [ T 2 -  T, + O ( L - ' ) ] [ I  +O(L  1))] 

+ L/-1 + O(~c ~ + ~.L-~-)] (4.10) 

Summing (4.10) over k from 1 to x, 

T L ( x ) _ T I  T 2 _ T I + O ( L  1) ~ [ l + O ( t r k + t c L - ~ ) ~  --j 
L k 1 

which means that the temperature profile is linear up to the order O(L 1): 

TL(X) = T1 + ( T 2 -  TI)x/L + O(L 1) (4.11) 
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Finally, we shall determine the energy flux. To this end first we compute 
CL. Formulas (4.6) and (4.11) give 

E x i J2r 7 p(2r  TI+(T2-T1)~+O(L 1) [L___~ao,/~_}_O(L-l(K.r+,,cz~.~)) 

Cc/~ 
t- O(L -2) + O(L -~(~c ~ + tc L x)) 

L I T ,  + ( T 2 -  TI )x /L]  1/2 

Since p(x)  is a probability distribution on [0, L]  | g, 52 L x=o ( p ( x ) ,  ~ ) = 1. 
Consequently, 

L L - I  
1 -- C c ~ IT1 + ( T 2 -  T1)x/L] 1/2 F O(L -1) (4.12) 

.'r 

The Z in the last formula is a Riemann approximation for the integral 

f~ dy 

FT 1 -~ ( Z  2 - T 1 ) y ]  l/2 

Computing this integral, (4.12) gives the asymptotics of CL: 

eL -N~11-t-N~22 I_O(L -1 ) 
2 

Substituting this into (4.9), we get the asymptotics for the energy flux 

Et,. = �88 T2 - T, ) ( x / ~  + ,,~22) + O(L 1) 

5. C O N C L U S I O N S  A N D  A R E M A R K  

We have calculated the heat conductivity for various caricature models 
of the Lorentz gas with a periodic configuration of scatterers, namely: 

(i) For random walks with internal states between two heat reser- 
voirs kept at constant temperatures (T1 and T2) (a)in absence of thermal 
equilibrium (Section 2) and (b) with thermal equilibrium (Section 4). 

(ii) For random walks with internal states between two absorbing 
barriers with a constant rate of incoming flux of particles at one of the 
walls (Section 3). 

Through the method of Markov partitions these stochastic evolutions 
are natural approximations of the deterministic Lorentz dynamics, In these 
models the square of the jumping rate corresponds to the energy. While in 
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the models of type (i) it remains constant between the walls, in model (ii) it 
changes from point to point, corresponding to the local temperature deter- 
mined by the conservation laws. 

The following expressions are obtained for the conductivities: 

Model  ( ia):  

T1/2 r l  /2 
K(T~, T2, D) = 02D)~ ( T 2 -  T1) -1 -2  (5.1) 

T~,/2 + T~/2 

Model  ( i b ) :  

~c~(D) : �89 

where 

~:e(D) = ; (D)  with D = ({, ~r), 7~ = D - ' ~  (5.2) 

Model  (i i): 

K('TI , T2, D)=�88 T,)(T'~J2 + T~ n) (5.3) 

Here ~ is the internal state distribution of the incoming particles in model 
(ii); further, 2 is a proportionality constant in the jumping rates, D is the 
particle density, and a 2 is the diffusion coefficient of the RWwIS. 

In expression (5.1), the dependence of the conductivity on the RWwIS 
(or on the geometry of the scatterer configuration of the Lorentz gas) is 
compressed in the factor a 2. 

The universality of (5.3), i.e., its independence of the RWwIS, may, at 
first glance, be surprising. Observe, however, that in model (ii) the energy 
exchange depends on the short-range [O(1)] behavior of the RWwIS. 

Observe that, though the dependence of K(T~, T 2, D) on 7'1 and T2 is 
different in the models of Sections 2 and 4, the heat conductivity coef- 
ficients K(T, D) are of the same form, const x ~/-T. 

Remark. An additional problem where our approach is applicable is 
that of transport in a composite medium. We mean a Lorentz gas (or a 
TCRWwIS) between two walls x~ = 0  and x~ = 2 L  where the scatterers 
form a periodic configuration between x~ = 0  and xj = L  and another 
periodic configuration between x~ = L and x 1 = 2Lo The solution of the 
problem for the RWwIS leads to finding the asymptotics of the solution of 
a 4 d x 4 d  homogeneous system of equations [cf. (2.4)], while for the 
TCRWwIS the size is doubled (8d x 8d). 
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